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VIBRATION CHARACTERISTICS OF A
SUSPENSION FOOTBRIDGE
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A suspension footbridge located in a tourist attraction in Singapore has a suspended span
of 35 m and was designed for static pedestrian and wind loads. In common with other
bridges of this type, it is a light, efficient structure and has a lively dynamic performance.

Distributed parameter and finite element models were used to understand the vertical
plane behaviour of the bridge and a prototype dynamic test using impact excitation was
conducted to check the models and investigate the dynamic response.

The first two vertical vibration modes were found to occur at the same frequency, 2 Hz,
as the average pedestrian footfall. Response to pedestrians was simulated using linear and
non-linear models of a moving excitation source.
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1. INTRODUCTION

At the time of writing, the only conventional suspension bridge in service in Singapore is
a 35 m span footbridge located in a tourist attraction. Because such a bridge is unusual
in Singapore, the design was made to be conservative, but the bridge has quite a lively
dynamic response. This ‘‘bouncy’’ bridge is seen as a positive asset, adding to the attraction
to visitors. The liveliness is typical of cable supported footbridges [1, 2].

Preliminary dynamic investigations from impact testing, heel drop and heavy walking
indicated that vertical vibrations were readily excited, lateral vibrations could only be
excited with difficulty, and that torsional response was generated only by deliberate effort
and was heavily damped.

It was found that vertical plane vibrations at approximately 2 Hz could be excited as
an antisymmetric mode or a symmetric mode depending on the point of excitation. A single
person walking heavily across the bridge could excite noticeable vibrations at this
frequency before reaching mid-span, resulting in a ‘‘floating’’ sensation while walking
across the remaining half-span. The nature of the 2 Hz vertical plane performance was
therefore of particular interest due to its coincidence with the natural footfall frequency.

The aim of this research has been: (a) to explore the liveliness of the bridge
experimentally; (b) to set up simple mathematical models representing vertical plane
performance; (c) to explore effects of varying structural parameters and tune the models
to the experimental results; and (d) to compare the measured response to a pedestrian with
simulation from linear and non-linear models.

2. STRUCTURAL ARRANGEMENT

The bridge features are shown in Figure 1. The suspended deck has a 35 m span and
there are no side spans. The deck comprises three grade 43 229×89 mm rolled steel
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channel section stringers with total second moment of area I=1·02×108 mm4. Lateral
bracing is provided by 152×76 mm channel section transom beams welded below the
stringers at 3 m intervals. 70×70 mm angles span diagonally between transoms. The
walkway comprises 25 mm timber panels supported on the stringers. The handrail system
is a vertical unbraced steel frame with uprights welded to the transoms.

The towers comprise rolled steel square and rectangular hollow sections. Each tower
upright, 6 m high, is braced by two diagonal and two horizontal members and is pinned
about a lateral axis at the tower footing. Curved machined blocks form the saddles. Each
main cable is a 26 mm diameter fibre core wire rope with a sag of 5·5 m and a horizontal
tension of approximately 30 kN per cable. In the design for static loads the effective cable
area Ac and (static) modulus Ec were taken as 66% and 30% respectively of values for
solid steel material. The straight backstays are 9·4 m long, at 30° to the horizontal.
Vertical hangers, at 3 m intervals, are 16 mm diameter steel rods, effectively pinned at each
end.

The fixity at the end of the deck is uncertain; the deck stringers end at the tower footings,
without specific restraint. The handrails continue beyond the towers and offer some
restraint to rotation.

Figure 1. The general arrangement of the suspension footbridge.
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The design of the structure, for static loading, was for 31 m/s wind speed, an unfactored
dead load of 2·14 kN/m and an unfactored live load of 5·58 kN/m.

3. MATHEMATICAL LOADING

From preliminary experimental investigations of the behaviour of the bridge, which
included excitation by heel-drop, walking and bouncing, it was observed that the
vertical plane vibrations were the strongest, most interesting and important aspect of
the dynamic behaviour. From the experience of analyzing and testing several other
suspension bridges [2–5], it is clear that the behaviour in the vertical plane is usually
modelled with acceptable accuracy using two-dimensional models, taking the deck as a
beam. This particular bridge has many similarities with the previously tested bridges; it
is symmetric, with cables and hangers in parallel vertical planes. The torsional and lateral
resistance of the deck in the other bridges has little, if any, effect on the vertical plane
behaviour.

Since the design of the bridge for static loads is conservative, the deck is likely to
contribute significantly to the dynamic stiffness. In the complete suspension bridge, since
the hangers are stiff, the deck and cable are forced to vibrate together in the vertical plane.
As separate components, the deck and cable would adopt their own vibration patterns,
so it is interesting to see to what extent the marriage of the deck and cable modifies the
natural behaviour of each substructure. To this end the bridge was represented as (i) a
catenary (i.e., zero deck rigidity), (ii) a beam (i.e., zero cable tension) and (iii) bridge—a
combination of beams (girders) suspended from the catenary.

Each of these was modelled as a distributed parameter (DP) system using continuum
equations and the bridge was also modelled using discrete co-ordinates or finite elements
(FEs). In each case the total mass and stiffness characteristics were collapsed to a single
vertical plane representation, ignoring lateral and torsional behaviour.

4. CONTINUUM EQUATIONS FOR THE DISTRIBUTED PARAMETER SYSTEM

For the catenary, the ends are assumed to be fixed and the mass of the deck is assumed
to be directly transmitted to the cable by inextensible connections. The total load per unit
length is r. In the static configuration the horizontal component of cable tension is H;
the time varying part in dynamic response is h(t). The vertical position with respect to an
origin (x, y=0) at the lowest (mid-span) point in the cable is y(x) and the time varying
part is v(x, t).

Under static loads, equilibrium is given by

Hy0= r (1)

and for dynamic response in free vibration by

(H+ h)( y+ v)0= r+ rv̈/g. (2)

Combining equations (1) and (2), ignoring second order terms, using the mid-span sag
computed from equation (1), d= rl2/8H, and using a term −EIviv for girder rigidity leads
to the following:

catenary, v0−
v̈r
Hg

=−
8dh
Hl2

; (3a)
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T 1

Natural frequencies according to structure and end fixity

Pinned, v0=0 Sprung, v0=krv' Clamped, v'=0

fVS1 (Hz) Cable 0·672 — —
Beam 0·396 — 0·898
Bridge (DP) 1·682 1·750 1·771
Bridge (2-D FE) 1·687 1·755 1·772
Bridge (3-D FE) 1·634 — 1·726

fVA1 (Hz) Cable 0·472 — —
Beam 1·585 — 2·476
Bridge (DP) 1·654 2·313 2·528
Bridge (2-D FE) 1·647 2·282 2·490
Bridge (3-D FE) 1·654 — 2·491

beam, −
v̈r
g

−EIviv =0; (3b)

bridge, v0−
v̈r
Hg

−
EIviv

H
=−

8dh
Hl2

. (3c)

Assuming a solution of the form v(x, t)= v̂(x) ejvt, h(t)= h
 ejvt and defining b2 = rv2/Hg
with v=2pf, the general solution for equation (3c) is

v̂(x)=A cosh ( p1x)+B sinh ( p1x)+C cos ( p2x)+D sin ( p2x)−8dh
 /(bl)2H, (4)

where p1 and p2 are

p1 =$(1+ o)1/2 +1
2a %

1/2

, p2 =$(1+ o)1/2 −1
2a %

1/2

, (5)

a=EI/H and o=4ab2. The natural frequencies are then

f=
b

2p 0Hg
r 1

1/2

. (6)

For the catenary of equation (3a), the hyperbolic terms in equation (4) vanish and
equation (5) becomes p2 0 b. Standard solutions for the catenary, equation (3a), and the
beam, equation (3b), are readily available [6, 7].

Solutions for natural frequencies are obtained by applying appropriate boundary
conditions on equation (4), to determine the constants A–D in terms of b and solving the
resulting frequency equations for roots bi . For the beam and bridge the boundary
conditions of end curvature and/or slope are applied. For bridge symmetric modes it is
also necessary to consider the effect of the tower and backstay via a boundary condition
linking longitudinal motion of the cable and oscillating main cable tension. The mode
shapes for mode i, 8i (x), are particular forms of equation (4) obtained by substituting for
bi .

The solutions for frequency and mode shape are given in Appendix A and the particular
values of frequency obtained with the design values are given in Table 1 for the first
antisymmetric mode (denoted as VA1 with natural frequency fVA1) and the first symmetric
mode (denoted as VS1 with natural frequency fVS1).
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Values in the column labelled v0= krv' are obtained when the uncertain fixity at each
deck end is represented by a variable rotational restraint kr corresponding to a rotational
spring ku = krEI. A value kr =1·0 was assumed initially, there being no direct way to
measure this value. The pinned and clamped conditions correspond to kr =0 and kr =a.

4.1.  

In Figure 2 are shown the mode shapes corresponding to the frequencies given in
Table 1; modes for the pinned beam, bridge or catenary are indistinguishable from each
other, as are the two clamped modes. For the same end fixity the bridge natural frequencies
are only slightly higher than for beam alone. The cable makes little contribution to the
bridge dynamic stiffness as it is relatively flexible for the antisymmetric modes, which are
essentially beam vibration modes. The antisymmetry implies zero variation of cable tension
and hence no deflection of the tower, so (to first order) the backstay is not a factor in these
modes.

4.1.  

The symmetric modes have more complex solutions since, unlike antisymmetric modes,
there will be significant cable stretching and oscillating tension h.

In Figure 3 are shown the mode shapes corresponding to the frequencies given in Table
1. The much increased stiffness of the combination (the top three values and shapes in
Figure 3) as compared to either beam or catenary on their own (the lower three values
and shapes in Figure 3) is because the cable is forced into a zero-node pattern, which
requires significant cable stretching over the natural double-node pattern for cable alone.

5. DISCRETIZED (FINITE ELEMENT) MODEL

The same parameters were used in a two-dimensional (2-D) FE model developed
[8] to explore non-linear effects in suspension bridges. Frequencies for VS1 and VA1 for

Figure 2. The antisymmetric vibration modes for catenary, beam and bridge. – – – , 1·654 Hz, pinned;
1·585 Hz, pinned beam; 0·472 Hz, cable. ——, 2·528 Hz, clamped; 2·476 Hz, clamped beam. —— 2·313 Hz,
kr =1·0.
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Figure 3. The symmetric vibration modes for cantenary, beam and bridge. – – –, 1·682 Hz, pinned; ——,
1·750 Hz, kr =1·0; , 1·771 Hz, clamped; – – –, 0·672 Hz, cable; –·–·–, 0·396 Hz, pinned beam; ······, 0·898 Hz,
clamped beam.

the same end conditions used in the DP model (kr =0, kr =1 and kr =a) are given in
Table 1.

In the FE model the mass is lumped at the nodes, which are at the connections
between hangers and the deck or cables, together with tower base and tip and the
backstay anchorage. The stiffness matrix K comprises an elastic component Ke and
a geometrically non-linear gravity stiffness Kg due to the axial loads in cables and
hangers. Although for this bridge the hangers are stiff, the model allows for
hangers that do not take axial compressive loads. As in the DP model, the FE
representation collapses the two cable planes into one. The model has only 33 degrees of
freedom.

Figure 4. Equivalent finite element models for the vertical plane response: (a) two-dimensional (2-D); (b)
three-dimensional (3-D).
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Figure 5. Modes predicted by the 3-D FE model (from design data with kr =0).

As a check on the accuracy of the 2-D model in representing a three-dimensional
structure, a full three-dimensional (3-D) model was set up using SAPIV and ANSYS codes.
The 3-D mesh and the equivalent 2-D mesh are shown in Figure 4. Some mode shapes
generated by the 3-D solution for the pinned deck condition (kr =0) are shown in Figure
5: modes VS1 and VA1 together with the fundamental lateral and torsional modes LS1
and TS1 are shown. As there is minimal difference between vertical modes from 3-D and
2-D solutions (even for more complex multi-noded mode shapes), the simple 2-D model
is used in the correlation.

The 2-D FE frequencies are close enough to the DP frequencies for the models to be
used in parallel. While values of either fVA1 or fVS1 are almost the same between the DP
and FE models, both are far too low compared with experimental estimates, showing the
need to modify the parameters in the models. The effects of varying structural parameters
were explored using both models.
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The parameters length (l), sag (d ), horizontal tension (H), load (r) and backstay length
(ls ) are known accurately, leaving the following uncertainities: (1) I for the deck, since no
account is made for handrail or other steelwork; (2) Ec for the main cable and backstay,
since the design value is rather conservative; and (3) the rotational constraint kr at the
deck end. These are seen as independent parameters in the frequency equations
(Appendix A).

Updating of three parameters in a model via system identification requires experimental
measurement of at least three values. A prototype test was conducted to determine a set
of at least three natural frequencies and mode shapes.

6. PROTOTYPE TESTING

The preliminary testing that highlighted the peculiar response at 2 Hz also showed the
need for a form of prototype testing able to define clearly the modal characteristics of the
bridge. Hammer testing [9] was used, being an ideal method for a structure of this size
and having several advantages over other possible methods; the equipment is simple and
portable, requiring no mains power supply, and each impact provides a wide-band load
with a good signal to noise ratio in the response, so that the frequency response function
(FRF) between excitation and response points can be determined with just a few hammer
blows.

Some factors that improve the quality of data obtained from prototype testing are as
follows: (1) high quality accelerometers should be used, having a response signal well above
instrument noise; (2) low-pass filters should be used to remove unwanted high amplitude
high frequency transients, in order to obtain the maximum benefit from the
recorder/analyzer dynamic range; (3) the force (transient)/response (exponential) windows
should be used carefully to minimize ambient noise effects.

In this test, a 16 lb (7·25 kg) instrumented hammer, an amplifier and low-pass filter
(Dytran), a pair of accelerometers (Allied Signal QA-700) with home-built signal
conditioning, a DAT tape recorder (TEAC RD120) and a dual channel signal analyzer
(Brüel and Kjær 2148) were used.

Although lateral and torsional modes were measured, the main concern was vertical
modes, measured on the deck, by maintaining one accelerometer at the same position and
moving the hammer to each of the 11 locations corresponding to hanger terminations and
transom beams.

The FRF, as a function of frequency v measured between the acceleration response at
position b(ẍb ) and the force at position a( pa ) is the inertance function

I(v)=
ẍb

pa
= s

i

−v28ia8ib

mi (w2
i −v2 +2jwvizi )

, (7)

in which mi , vi and zi are, respectively, the modal mass, the frequency and the damping
ratio for mode i.

Because of reciprocity, in theory there is no difference between moving the hammer
(varying a) and moving the accelerometer (varying b). In practice, the moving mass of the
tester may result in slight modifications to the modal parameters.

Data were analyzed on a 0–25 Hz base-band, with 801 lines and 0·0312 Hz resolution.
Force (0·2 s duration TF ) and response (4 s time constant TR ) windows were used, taking
an average of four hammer impacts.
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As well as hammer testing, modes VS1 and VA1 were excited by jumping followed by
free decay, in order to provide damping estimates directly from the logarithmic decrement.
Finally, the response due to a single pedestrian crossing the bridge was recorded.

7. EXPERIMENTAL MODAL CHARACTERISTICS

A set of 11 FRFs, corresponding to each of the measurement locations, were analyzed
using both ICATS [10] and MDOF [11] modal analysis software. The imaginary
component of I(v) (see Figure 6) clearly shows the presence of two very close modes, in
antiphase for this particular combination of positions a and b.

In Figure 7 are shown measured mode shapes (8ia ) for the lowest five measured modes
(i=1, . . . , 5) and 11 excitation positions (a) together with frequencies and damping ratios.
In Figure 6 a sixth mode is indicated at approximately 11·1 Hz, which has a mode shape
that is almost indistinguishable from that of mode VS3 and which was not generated in
any of the models.

Damping ratio estimates zest for the three higher modes were obtained from ICATS with
a correction for the effect of the response window: zest = zICATS −1/2pfTR . Values zest for
the fundamental symmetric and antisymmetric modes were obtained from the tail ends of
the free decay response from large oscillations induced by jumping.

In Figure 8 are shown values of z obtained for mode VA1 via logarithmic decrement.
The values decrease from 1·8% for a peak-to-peak 1/4 span amplitude of 35 mm to 1%
at low amplitude. Likewise, for VS1 the lowest value obtained was 1%.

8. TORSIONAL AND LATERAL RESPONSE
Measurements of the lateral and torsional response were made for reference but, as

mentioned previously, the modes were not so easily excited and therefore not a critical
concern.

Two torsional modes were identified; an antisymmetric mode (TA1) at 1·84 Hz with
approximately 2·4% damping and a symmetric mode (TS1) at 2·52 Hz with approximately
1·4% damping. The fundamental lateral mode (LS1) at 1·25 Hz was found to be symmetric
and very heavily damped.

Figure 6. The imaginary part of inertance function I(v).
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Figure 7. A comparison of theoretical mode shapes from the DP model with experimental values (circles). (a)
Mode VA1: fVA1 =2·072 Hz, zVA1 0 1·0%, MAC=0·976. (b) Mode VS1: fVS1 =2·151 Hz, zVS1 0 1·0%,
MAC=0·955. (c) Mode VS2: fVS2 =4·288 Hz, zVS2 =2·0%, MAC=0·978. (d) Mode VA2: fVA2 =7·136 Hz,
zVA2 =1·32%, MAC=0·928. (e) Mode VS3: fVS3 =10·631 Hz, zVS3 =1·56%, MAC=0·964.

Comparison with the 3-D solution (Figure 5) shows reasonable agreement for LS1. In
fact, assuming no restraint on rotation about a vertical axis at the deck ends, the mode
LS1 frequency depends heavily on the effectiveness of the diagonal bracing.

The 3-D model collapses the stringers, transoms, diagonal bracing and handrail into a
horizontal plane, which undervalues the rotational inertia and over-emphasizes the
stiffness of the steel frame and its connections in torsion, so the predicted TA1 and TS1
frequencies are bound to be too high. Even so, it is surprising that the antisymmetric modes
TA1 appears at the lower frequency.

Figure 8. Damping values for mode VA1 obtained by logarithmic decrement during free decay.
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9. SYSTEM IDENTIFICATION

Based on the initial theoretical estimates and the measured natural frequencies, the
parameters I, Ec and kr were adjusted to obtain a good fit between the experimental values
for the first five vertical mode natural frequencies and those obtained from the 2-D FE
model.

The least squares procedure [12] was used, as follows. If the prior estimates of structural
parameters (I, Ec and kr ) are assembled into a column vector r0, the FE values of natural
frequencies obtained using r0 are written as a column vector y0 and the experimental (exact)
values of natural frequency are written as ye , then for small differences between
experimental and FE values the ‘‘correct’’ values of the parameters r are found using

y0 − ye =T(r0 − r) (8)

or Y=TR, where T is a sensitivity matrix with terms 1yk /1ri , i=1, . . . , 3, k=1, . . . , 5.
The iteration scheme to find r via R=T−1Y becomes

rn+1 = rn −T−1(yn − ye ). (9)

Since T is a 5×3 matrix, the pseudo-inverse (TTT)−1TT was used, which is equivalent
to a least squares minimization.

The effective cable area was maintained at 66% of solid value, i.e., 708 mm2, while better
starting values of Ec and kr were used in the DP model based on the observations, from
Table 1 and Appendix A, that fVS1 is too low and increases with Ec , while kr , which affects
fVA1, lies somewhere between 0·0 and 1·0. Initial values in r0 were thus Ec =100 kN/mm2,
kr =0·3 and I=1·020×108 mm4.

After three iterations with equation (9), each requiring four eigensolutions (to determine
T and the updated y), r converged to Ec =100·43 kN/mm2, kr =0·2474 and
I=1·1336×108 mm4.

In Table 2 the natural frequencies (y) using these values are compared with the
experimental frequencies and values obtained with equations (A7) and (A14).

The last three columns show the elements of T as 100(ri /lk )(1lk/1ri ), representing the
percentage change in mode frequency per 100% change in parameter. Clearly, Ec is the
dominant parameter in mode VS1, for which kr has little effect. Ec has a much smaller
influence on other symmetric modes. The girder rigidity I is the dominant parameter for
all other modes, and to a lesser extent kr .

The mode shapes obtained from equations (A6) and (A14) using values in column 4
of Table 2 are shown as the smooth curves in Figure 7. The Modal Assurance Criterion
(MAC) values in Figure 7 relate to the closeness of fit between experimental mode shape
values and the corresponding mode shapes values from equations (A6) and (A14) for the
exact measurement points.

T 2

Adjusted theoretical natural frequencies (f) and sensitivities (T)

Experimental 1f/1Ec 1f/1I 1f/1kr

Mode value (Hz) FE value (Hz) DP value (Hz) (%) (%) (%)

VA1 2·072 2·110 2·142 0·00 46·24 11·39
VS1 2·151 2·149 2·146 39·70 7·58 0·60
VS2 4·288 4·300 4·412 2·89 44·78 8·07
VA2 7·136 7·059 7·298 0·01 47·32 6·22
VS3 10·631 10·672 11·115 0·09 48·25 5·08
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10. SIMULATION OF PEDESTRIAN RESPONSE TIME HISTORIES

In its context as part of a tourist attraction, the bridge exhibits acceptable behaviour
for its users. Its liveliness is not a problem—it is a feature. Where liveliness is not desirable,
particularly in a more conventional footbridge having a low fundamental natural
frequency ( f0), consideration is usually given to vibration serviceability defined in terms
of objective criteria [13–15] for pedestrian comfort.

If pedestrian comfort is an issue, the applicable code in Singapore, BS5400 [13], specifies
a vibration limit 0·5( f0)1/2 m s−2 for a single pedestrian, but apparently [15] this is only
a recommendation. BS5400 also provides a method of calculating response by
approximating a pedestrian as a pulsating dynamic load,

F(t)=180 sin (2pf0t)N, (10)

moving across the bridge at a speed of 0·9f0 m/s, using the appropriate specified logarithmic
decrement d, which is 0·03 (for steel with asphalt or epoxy surfacing).

The forces generated during walking (running and jumping) are not pure sinusoids and
can be modelled as Fourier series of the form [15]

F(t)=P01+ s
N

n=1

an sin (2pnft+8n )1, (11)

in which the fundamental (n=1) is the strongest with a1 1 0·35 for f1 2 Hz, giving a
pulsating force of 294 N for a 75 kg person (P=736 N). Equation (10) is equivalent to
equation (11) if only the first term is taken, with a1 =0·24.

It is probable that a1 would be higher if the subject was deliberately walking heavily to
excite the bridge; for jumping, a1 can be as high as 1·75. Also the value d=0·03 (z1 0·5%)
is too low, since from measurements ze 1%.

For the DP model, the response is obtained by normal mode analysis, writing

v(x, t)= s
i

8i (x)Yi (t). (12)

Using equation (3c), with r'= r/g and constant member properties,

v̈r'−Hv0+EIviv −8dh/l 2 =Fd(x− vt) sin 2pft. (13)

The modal response (mode i) is then obtained from

Y� i g
1/2

−1/2

r'82
i dx+Yi g

1/2

−1/2

[−H80i 8i +EI8iv
i 8i −8dh
 /l28i ] dx=F8i (vt) sin ( ft). (14)

The first integral is the modal mass mi and the second is the modal stiffness ki (=miv
2
i ),

for mode i. Adding a damping term,

mi (Y� i +2ziviY� i +v2
i Yi )=F8i (vt) sin 2pft. (15)

For the first pinned antisymmetric mode ( h=0, 81(x)= sin 2px/l),

r'L
2

(Y� +2zvY� +v2Y)=F sin
2pvt

l
sin 2pft. (16)
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Variations of equation (16) with different modal mass and more complex functions
8i (x) (as in Appendix A) to replace sin (2pvt/l) will apply to other end conditions and
symmetric modes, and the response for two modes together can be obtained by
superposition.

The response to a moving pedestrian was simulated first using VS1 and VA1 mode
shapes from Appendix A in a Duhammel integral with equation (16) and, second, using
the non-linear FE model with a1 =0·35 and z=1%. The following peak acceleration
values (m/s2) were obtained:

1/4 span Mid-span 3/4 span

DP 3·34 3·09 3·34
FE 2·71 2·55 2·28
FE+mt 2·42 2·28 2·19

The measured maximum value (at 3/4 span) was 2·18 m/s2.
The last row in the above table is for a non-linear simulation in which the mass mt of

the pedestrian accelerating at v̈t is added in as a forcing term −mtv̈t . For the FE simulations
the walking frequency is taken as the average of fVA1 and fVS1.

It is worth noting that for all but the largest amplitude oscillations [8] the vertical plane
vibrations of a suspension bridge with invariant mass are well represented by models
linearized about the dead load condition. The most significant non-linearities are likely to
come from the various mechanisms that constitute ‘‘structural damping’’ [16].

In Figure 9 is shown the actual acceleration response measured with a pedestrian (a
75 kg student tester) walking briskly and heavily across the bridge in the direction from
1/4 span to 3/4 span, and in Figure 10 are shown the acceleration time histories generated

Figure 9. The measured vibration acceleration response (in m/s2) due to the passage of a ‘‘pedestrian’’.
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Figure 10. The simulated vibration acceleration response (in m/s2) due to the passage of a ‘‘pedestrian’’.

in the non-linear simulation (FE+mt ). Figures 9(a) and 10(a) are for 1/4 span responses,
and Figures 9(b) and 10(b) are for 3/4 span responses. Figures 9(c) and 10(c) and Figures
9(d) and 10(d) are, respectively, the half-sum and half-difference of the 1/4 span and 3/4
span, intended to represent the responses in mode VS1 and mode VA1 respectively.
Comparison of Figures 9 and 10 suggests an underestimation of damping and walking
speed (i.e., stride) in the simulation.

Note that since the response is almost entirely due to 2 Hz modes, the accelerations can
be converted approximately to displacements (in mm) by multiplying by 1000/v2 1 6·3.

None of the simulations consider the variable damping (Figure 9) or the flexibility and
damping capacity of the pedestrian. In the DP simulation, fVA1 and fVS1 are practically
identical and the response is dominated by mode VS1 response.

11. DISCUSSION AND CONCLUSIONS

Simple two-dimensional finite element (FE) and distributed parameter (DP) models can
be used to study the dynamics of the critical vertical plane response of the bridge and
produce very similar estimates of bridge modes. Depending on computer implementation
(these models were run on a PC) the FE model has the slight advantage in terms of ease
of studying the effect of different parameters on several modes at once.

The DP model is very useful for predicting fVS1 and fVA1 alone. From studying these
results it is clear that the cable axial stiffness is most important for the first symmetric mode
(VS1), and apart from this the other modes are similar to those of a beam with partially
fixed ends. This is reflected in the FE system identification sensitivity matrix.
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The coincidence of fVS1 and fVA1 at a typical footfall frequency accounts for the relatively
high response of the bridge despite its conservative rigidity. In usual usage, the passage
of several pedestrians would reduce the additive effect of modes and alter the dynamic
characteristics. When modelling the response to a pedestrian, the response depends very
much on the closeness of the two modes and the walking characteristics.

The issue of serviceability is of course very important for this type of bridge. Clearly,
it is lively, and since part of its function is to induce tourists to come and enjoy its bouncy
behaviour, it is definitely serviceable.

Were it desirable, tuning of the bridge to adjust vertical plane natural frequencies
upwards or downwards could be done via the girder rigidity and cable stiffness. Another
parameter is the length of backstay, which would affect mode VS1 the most. For an existing
bridge, frequencies could be altered by adjusting handrail continuity at deck ends, or by
adding mass at strategic points. The use of discrete dampers [15] would probably be less
viable for this type of bridge, since they would require maintenance.
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APPENDIX A: NATURAL FREQUENCIES AND MODE SHAPES FROM CONTINUUM
EQUATIONS

The starting point in determining frequencies and mode shapes is the solution of
equation (3c):

v̂(x)=A cosh ( p1x)+B sinh ( p1x)+C cos ( p2x)+D sin ( p2x)−8dh
 /(bl)2H. (A1)

.1.  

For antisymmetric modes, symmetry requires that A=C= h
 =0, leaving

v̂(x)=B sinh ( p1x)+D sin ( p2x). (A2)

Pinned girder. The boundary conditions are v(2l/2)= v0(2l/2)=0, leading to B=0
and a frequency equation

sin ( p2l/2)=0 (A3)

with mode shapes, for unit D and values of p2 satisfying equation (A3), of

8(x)= sin ( p2x). (A4)

Clamped girder. The boundary conditions are v(2l/2)= v'(2l/2)=0, leading to a
frequency equation

tan ( p2l/2)= ( p2/p1) tanh ( p1l/2) (A5)

with mode shapes, for unit D and b satisfying equation (A5), of

8(x)= sin ( p2x)−
sin ( p2l/2)
sinh ( p1l/2)

sinh ( p1x). (A6)

Girder with rotational springs. The boundary conditions are v(2l/2)=0, v0(−l/
2)= krv'(−l/2), v0(l/2)=−krv'(l/2), with kr = ku /EI, leading to a frequency equation

p2 cot ( p2l/2)− p1 coth ( p1l/2)=
(1+ o)1/2

akr
, (A7)

with mode shapes given by equation (A6) for b satisfying equation (A7).
Equations (A3) and (A5) are special cases of equation (A7) when, respectively, kr =0

and kr =a.

.2.  

For symmetry, B, D=0, but the oscillating component of tension h
 is not required to
be zero; i.e.,

v̂(x)=A cosh ( p1x)+C cos ( p2x)−8dh
 /(bl)2H. (A8)

Solutions are more complex than for the antisymmetric modes, since cable stretching due
to the non-zero h
 has to be taken into account via the ‘‘cable equation’’ [6], which in this
case leads to

h
 le
EcAc

=[û]+l/2
−l/2 −g

+l/2

−l/2

y0v̂ dx (A9)
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where the ‘‘virtual cable length’’ le 1 l(1+8(d/l)2), Ec and Ac are the cable modulus and
sectional area, and û(x) is the longitudinal deflection.

The frequency equations are obtained by determining A and C in equation (A8) in terms
of h
 via the boundary conditions and then substituting equation (A8) into equation (A9).
In addition, the effect of the backstay length ls and inclination u can be approximated by
a spring ks =EcAc cos2 u/ls such that

û(l/2)− û(−l/2)=2h
 /ks . (A10)

Pinned girder:

(bl)2

l2 61+
2ls

cos2 ule7=1−0 2
p2l1 [tan ( p2l/2)+ ( p2/p1)3 tanh ( p1l/2)]

(1+ ( p2/p1)
2)

, (A11)

where

l2 =Ec
Ac

H
l
le 08d

l 1
2

.

Clamped girder:

(bl)2

l2 61+
2ls

cos2 ule7=1−0 2
p2l1 (1+ ( p2/p1)

2)
[cot ( p2l/2)+ ( p2/p1) coth ( p1l/2)]

. (A12)

Girder with rotational springs:

(bl)2

l2 61+
2ls

cos2 ule7=1−0 2
p2l1 (sin ( p2l/2)+ ( p2/p1)g sinh ( p1l/2))

(cos ( p2l/2)+ g cosh ( p1l/2))
, (A13)

where

g=0p2

p11 (kr sin ( p2l/2)+p2 cos ( p2l/2))
(kr sinh ( p1l/2)+ p1 cosh ( p1l/2))

.

Equations (A11) and (A12) are special cases of equation (A13) when, respectively, kr =0
and kr =a.

Mode shapes for the symmetric modes are given by using appropriate values of g and
b satisfying equations (A11)–(A13):

8(x)=
8dh

(bl)2 6 cos ( p2x)+ g cosh ( p1x)

cos ( p2l/2)+ g cosh ( p1l/2)
−17. (A14)

For a catenary with fixed ends, ls =0, p2 = b and g=0, and then equations (A11)–(A13)
lead to the frequency equation

0bl
21

2 4
l2 =1−0 2

bl1 tan 0bl
21. (A15)
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Finally, in the symmetric mode, the tower tip displacement is related to the mid-span
displacement by

û(−l/2)=8(0)
Hb2ls

EcArc cos2 u

1+ g

(cos ( p2l/2)+ g cosh ( p1l/2))
. (A16)


